3.1.93 \(\int \cot ^2(e+f x) \sqrt {a+a \sin (e+f x)} \, dx\) [93]

Optimal. Leaf size=89 \[ -\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{f}+\frac {3 a \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \sqrt {a+a \sin (e+f x)}}{f} \]

[Out]

-arctanh(cos(f*x+e)*a^(1/2)/(a+a*sin(f*x+e))^(1/2))*a^(1/2)/f+3*a*cos(f*x+e)/f/(a+a*sin(f*x+e))^(1/2)-cot(f*x+
e)*(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2795, 3060, 2852, 212} \begin {gather*} \frac {3 a \cos (e+f x)}{f \sqrt {a \sin (e+f x)+a}}-\frac {\cot (e+f x) \sqrt {a \sin (e+f x)+a}}{f}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a \sin (e+f x)+a}}\right )}{f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[e + f*x])/Sqrt[a + a*Sin[e + f*x]]])/f) + (3*a*Cos[e + f*x])/(f*Sqrt[a + a*Sin
[e + f*x]]) - (Cot[e + f*x]*Sqrt[a + a*Sin[e + f*x]])/f

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2795

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[-(a + b*Sin[e +
f*x])^m/(f*Tan[e + f*x]), x] + Dist[1/a, Int[(a + b*Sin[e + f*x])^m*((b*m - a*(m + 1)*Sin[e + f*x])/Sin[e + f*
x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] &&  !LtQ[m, -1]

Rule 2852

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[-2*(
b/f), Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps

\begin {align*} \int \cot ^2(e+f x) \sqrt {a+a \sin (e+f x)} \, dx &=-\frac {\cot (e+f x) \sqrt {a+a \sin (e+f x)}}{f}+\frac {\int \csc (e+f x) \left (\frac {a}{2}-\frac {3}{2} a \sin (e+f x)\right ) \sqrt {a+a \sin (e+f x)} \, dx}{a}\\ &=\frac {3 a \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \sqrt {a+a \sin (e+f x)}}{f}+\frac {1}{2} \int \csc (e+f x) \sqrt {a+a \sin (e+f x)} \, dx\\ &=\frac {3 a \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \sqrt {a+a \sin (e+f x)}}{f}-\frac {a \text {Subst}\left (\int \frac {1}{a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{f}\\ &=-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{f}+\frac {3 a \cos (e+f x)}{f \sqrt {a+a \sin (e+f x)}}-\frac {\cot (e+f x) \sqrt {a+a \sin (e+f x)}}{f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(206\) vs. \(2(89)=178\).
time = 0.67, size = 206, normalized size = 2.31 \begin {gather*} \frac {\csc ^4\left (\frac {1}{2} (e+f x)\right ) \sqrt {a (1+\sin (e+f x))} \left (-4 \cos \left (\frac {1}{2} (e+f x)\right )+2 \cos \left (\frac {3}{2} (e+f x)\right )+4 \sin \left (\frac {1}{2} (e+f x)\right )-\log \left (1+\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)+\log \left (1-\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \sin (e+f x)+2 \sin \left (\frac {3}{2} (e+f x)\right )\right )}{f \left (1+\cot \left (\frac {1}{2} (e+f x)\right )\right ) \left (\csc \left (\frac {1}{4} (e+f x)\right )-\sec \left (\frac {1}{4} (e+f x)\right )\right ) \left (\csc \left (\frac {1}{4} (e+f x)\right )+\sec \left (\frac {1}{4} (e+f x)\right )\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]^2*Sqrt[a + a*Sin[e + f*x]],x]

[Out]

(Csc[(e + f*x)/2]^4*Sqrt[a*(1 + Sin[e + f*x])]*(-4*Cos[(e + f*x)/2] + 2*Cos[(3*(e + f*x))/2] + 4*Sin[(e + f*x)
/2] - Log[1 + Cos[(e + f*x)/2] - Sin[(e + f*x)/2]]*Sin[e + f*x] + Log[1 - Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]
*Sin[e + f*x] + 2*Sin[(3*(e + f*x))/2]))/(f*(1 + Cot[(e + f*x)/2])*(Csc[(e + f*x)/4] - Sec[(e + f*x)/4])*(Csc[
(e + f*x)/4] + Sec[(e + f*x)/4]))

________________________________________________________________________________________

Maple [A]
time = 2.00, size = 125, normalized size = 1.40

method result size
default \(\frac {\left (1+\sin \left (f x +e \right )\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}\, \left (\sin \left (f x +e \right ) \left (2 \sqrt {a -a \sin \left (f x +e \right )}\, a^{\frac {3}{2}}-\arctanh \left (\frac {\sqrt {a -a \sin \left (f x +e \right )}}{\sqrt {a}}\right ) a^{2}\right )-\sqrt {a -a \sin \left (f x +e \right )}\, a^{\frac {3}{2}}\right )}{\sin \left (f x +e \right ) a^{\frac {3}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(125\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^2*(a+a*sin(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

(1+sin(f*x+e))*(-a*(sin(f*x+e)-1))^(1/2)*(sin(f*x+e)*(2*(a-a*sin(f*x+e))^(1/2)*a^(3/2)-arctanh((a-a*sin(f*x+e)
)^(1/2)/a^(1/2))*a^2)-(a-a*sin(f*x+e))^(1/2)*a^(3/2))/sin(f*x+e)/a^(3/2)/cos(f*x+e)/(a+a*sin(f*x+e))^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(a+a*sin(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(f*x + e) + a)*cot(f*x + e)^2, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 306 vs. \(2 (85) = 170\).
time = 0.39, size = 306, normalized size = 3.44 \begin {gather*} \frac {{\left (\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 1\right )} \sin \left (f x + e\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (f x + e\right )^{3} - 7 \, a \cos \left (f x + e\right )^{2} - 4 \, {\left (\cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - 2 \, \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} - 9 \, a \cos \left (f x + e\right ) + {\left (a \cos \left (f x + e\right )^{2} + 8 \, a \cos \left (f x + e\right ) - a\right )} \sin \left (f x + e\right ) - a}{\cos \left (f x + e\right )^{3} + \cos \left (f x + e\right )^{2} + {\left (\cos \left (f x + e\right )^{2} - 1\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 1}\right ) - 4 \, {\left (2 \, \cos \left (f x + e\right )^{2} + {\left (2 \, \cos \left (f x + e\right ) + 3\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 3\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{4 \, {\left (f \cos \left (f x + e\right )^{2} - {\left (f \cos \left (f x + e\right ) + f\right )} \sin \left (f x + e\right ) - f\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(a+a*sin(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(f*x + e)^2 - (cos(f*x + e) + 1)*sin(f*x + e) - 1)*sqrt(a)*log((a*cos(f*x + e)^3 - 7*a*cos(f*x + e)^2
 - 4*(cos(f*x + e)^2 + (cos(f*x + e) + 3)*sin(f*x + e) - 2*cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a)*sqrt(a)
- 9*a*cos(f*x + e) + (a*cos(f*x + e)^2 + 8*a*cos(f*x + e) - a)*sin(f*x + e) - a)/(cos(f*x + e)^3 + cos(f*x + e
)^2 + (cos(f*x + e)^2 - 1)*sin(f*x + e) - cos(f*x + e) - 1)) - 4*(2*cos(f*x + e)^2 + (2*cos(f*x + e) + 3)*sin(
f*x + e) - cos(f*x + e) - 3)*sqrt(a*sin(f*x + e) + a))/(f*cos(f*x + e)^2 - (f*cos(f*x + e) + f)*sin(f*x + e) -
 f)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \cot ^{2}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**2*(a+a*sin(f*x+e))**(1/2),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))*cot(e + f*x)**2, x)

________________________________________________________________________________________

Giac [A]
time = 3.09, size = 157, normalized size = 1.76 \begin {gather*} -\frac {\sqrt {2} {\left (\sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}}\right ) \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + 8 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + \frac {4 \, \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )}{2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1}\right )} \sqrt {a}}{4 \, f} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^2*(a+a*sin(f*x+e))^(1/2),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*(sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*f*x + 1/2*e))/abs(2*sqrt(2) + 4*sin(-1/4*pi + 1
/2*f*x + 1/2*e)))*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)) + 8*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/
2*f*x + 1/2*e) + 4*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))*sin(-1/4*pi + 1/2*f*x + 1/2*e)/(2*sin(-1/4*pi + 1/2*f*x
 + 1/2*e)^2 - 1))*sqrt(a)/f

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\mathrm {cot}\left (e+f\,x\right )}^2\,\sqrt {a+a\,\sin \left (e+f\,x\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(e + f*x)^2*(a + a*sin(e + f*x))^(1/2),x)

[Out]

int(cot(e + f*x)^2*(a + a*sin(e + f*x))^(1/2), x)

________________________________________________________________________________________